Nuprl Lemma : geo-add-length_functionality

[e:BasicGeometry]. ∀[x,y,x',y':{p:Point| O_X_p} ].  (x y ≡ x' y') supposing (x ≡ x' and y ≡ y')


Proof




Definitions occuring in Statement :  geo-add-length: q basic-geometry: BasicGeometry geo-X: X geo-O: O geo-eq: a ≡ b geo-between: a_b_c geo-point: Point uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: basic-geometry: BasicGeometry all: x:A. B[x] guard: {T} subtype_rel: A ⊆B false: False implies:  Q not: ¬A geo-eq: a ≡ b geo-add-length: q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set_wf geo-eq_wf geo-X_wf geo-O_wf geo-between_wf geo-point_wf geo-add-length_wf1 Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-extend_functionality geo-eq_weakening geo-Op-sep subtype_rel_sets
Rules used in proof :  voidElimination equalitySymmetry equalityTransitivity isect_memberEquality setEquality dependent_set_memberEquality rename setElimination independent_isectElimination instantiate hypothesis applyEquality isectElimination extract_by_obid because_Cache hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaFormation

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,y,x',y':\{p:Point|  O\_X\_p\}  ].    (x  +  y  \mequiv{}  x'  +  y')  supposing  (x  \mequiv{}  x'  and  y  \mequiv{}  y')



Date html generated: 2017_10_02-PM-04_53_20
Last ObjectModification: 2017_08_05-PM-04_10_23

Theory : euclidean!plane!geometry


Home Index