Nuprl Lemma : geo-be-end-eq

e:BasicGeometry. ∀a,b,c:Point.  (a_b_c  ab ≅ ac  b ≡ c)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: uiff: uiff(P;Q) and: P ∧ Q squash: T basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane true: True iff: ⇐⇒ Q rev_implies:  Q geo-zero-length: 0
Lemmas referenced :  geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-between_wf geo-point_wf geo-add-length-between geo-congruent-iff-length equal_wf squash_wf true_wf istype-universe geo-length-type_wf geo-add-length_wf geo-length_wf geo-mk-seg_wf subtype_rel_self iff_weakening_equal geo-add-length-zero geo-add-length-cancel-left geo-zero-length_wf geo-length-null-segment geo-congruence-identity-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination productElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality setElimination rename natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    (a\_b\_c  {}\mRightarrow{}  ab  \mcong{}  ac  {}\mRightarrow{}  b  \mequiv{}  c)



Date html generated: 2019_10_16-PM-01_25_43
Last ObjectModification: 2018_12_15-PM-09_59_35

Theory : euclidean!plane!geometry


Home Index