Nuprl Lemma : geo-gt-trans
∀e:EuclideanPlane. ∀a,b,c,d,x,y:Point.  (ab > cd 
⇒ cd > xy 
⇒ ab > xy)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-gt: cd > ab
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-gt: cd > ab
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
basic-geometry-: BasicGeometry-
Lemmas referenced : 
sq_stable__geo-gt, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-gt_wf, 
geo-point_wf, 
geo-congruent-between-exists2, 
geo-between-symmetry, 
geo-between-sep, 
geo-sep-sym, 
geo-congruent-iff-length, 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-between-exchange4, 
geo-between_wf, 
geo-congruent_wf, 
geo-sep_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
equalitySymmetry, 
dependent_pairFormation_alt, 
independent_pairFormation, 
equalityTransitivity, 
productIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x,y:Point.    (ab  >  cd  {}\mRightarrow{}  cd  >  xy  {}\mRightarrow{}  ab  >  xy)
Date html generated:
2019_10_16-PM-01_17_07
Last ObjectModification:
2019_04_19-PM-03_34_21
Theory : euclidean!plane!geometry
Home
Index