Nuprl Lemma : geo-gt-trans

e:EuclideanPlane. ∀a,b,c,d,x,y:Point.  (ab > cd  cd > xy  ab > xy)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-gt: cd > ab geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-gt: cd > ab squash: T uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a sq_stable: SqStable(P) exists: x:A. B[x] and: P ∧ Q prop: basic-geometry: BasicGeometry uiff: uiff(P;Q) cand: c∧ B basic-geometry-: BasicGeometry-
Lemmas referenced :  sq_stable__geo-gt euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-gt_wf geo-point_wf geo-congruent-between-exists2 geo-between-symmetry geo-between-sep geo-sep-sym geo-congruent-iff-length geo-between-inner-trans geo-between-exchange3 geo-between-exchange4 geo-between_wf geo-congruent_wf geo-sep_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule independent_functionElimination productElimination imageMemberEquality baseClosed universeIsType because_Cache inhabitedIsType dependent_functionElimination equalitySymmetry dependent_pairFormation_alt independent_pairFormation equalityTransitivity productIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x,y:Point.    (ab  >  cd  {}\mRightarrow{}  cd  >  xy  {}\mRightarrow{}  ab  >  xy)



Date html generated: 2019_10_16-PM-01_17_07
Last ObjectModification: 2019_04_19-PM-03_34_21

Theory : euclidean!plane!geometry


Home Index