Nuprl Lemma : geo-congruent-between-exists2
∀e:BasicGeometry. ∀a,b,c,a',c':Point.
  (a ≠ c 
⇒ (∃b':Point. (a'_b'_c' ∧ ab ≅ a'b' ∧ bc ≅ b'c')) supposing (a_b_c and ac ≅ a'c'))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent_wf, 
geo-sep_wf, 
geo-point_wf, 
euclidean-plane-axioms, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-sep-sym, 
extend-using-SC, 
geo-extend-exists, 
geo-between-sep, 
geo-construction-unicity, 
subtype_rel_self, 
basic-geometry-_wf, 
geo-between-symmetry, 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-between-exchange4, 
geo-three-segment, 
geo-congruent-iff-length, 
geo-between_functionality, 
geo-eq_weakening, 
geo-congruent_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',c':Point.
    (a  \mneq{}  c  {}\mRightarrow{}  (\mexists{}b':Point.  (a'\_b'\_c'  \mwedge{}  ab  \mcong{}  a'b'  \mwedge{}  bc  \mcong{}  b'c'))  supposing  (a\_b\_c  and  ac  \mcong{}  a'c'))
Date html generated:
2019_10_16-PM-01_16_53
Last ObjectModification:
2019_04_19-PM-03_33_00
Theory : euclidean!plane!geometry
Home
Index