Nuprl Lemma : geoline-subtype2
∀[e:EuclideanParPlane]. (LINE ⊆r (l,m:Line//l || m))
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-Aparallel: l || m
, 
geoline: LINE
, 
geo-line: Line
, 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
geoline: LINE
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
euclidean-parallel-plane_wf, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
subtype_rel_transitivity, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line-eq_wf, 
geo-Aparallel_wf, 
geoline-subtype1, 
subtype_rel_self, 
geo-Aparallel-equiv, 
geo-line-eq-equiv, 
quotient_subtype_quotient, 
quotient-member-eq, 
euclidean-planes-subtype, 
geo-Aparallel_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
lambdaFormation, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[e:EuclideanParPlane].  (LINE  \msubseteq{}r  (l,m:Line//l  ||  m))
Date html generated:
2018_05_22-PM-01_11_26
Last ObjectModification:
2018_05_11-PM-01_52_46
Theory : euclidean!plane!geometry
Home
Index