Nuprl Lemma : geoline-subtype2

[e:EuclideanParPlane]. (LINE ⊆(l,m:Line//l || m))


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geoline: LINE geo-line: Line quotient: x,y:A//B[x; y] subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  geoline: LINE uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] guard: {T} uimplies: supposing a implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  euclidean-parallel-plane_wf geo-line_wf euclidean-plane-structure-subtype subtype_rel_transitivity euclidean-plane-structure_wf geo-primitives_wf geo-line-eq_wf geo-Aparallel_wf geoline-subtype1 subtype_rel_self geo-Aparallel-equiv geo-line-eq-equiv quotient_subtype_quotient quotient-member-eq euclidean-planes-subtype geo-Aparallel_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut axiomEquality hypothesis extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality instantiate isectElimination independent_isectElimination lambdaEquality because_Cache lambdaFormation independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[e:EuclideanParPlane].  (LINE  \msubseteq{}r  (l,m:Line//l  ||  m))



Date html generated: 2018_05_22-PM-01_11_26
Last ObjectModification: 2018_05_11-PM-01_52_46

Theory : euclidean!plane!geometry


Home Index