Nuprl Lemma : hp-angle-sum-lt4

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
  (x' y'z'
   abc xyz ≅ ijk
   a'b'c' x'y'z' ≅ i'j'k'
   ijk ≅a i'j'k'
   a' b'c'
   yz
   jk
   x'y'z' < xyz
   abc < a'b'c')


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  cong-angle-preserves-lsep_strong geo-cong-angle-symm2 hp-angle-sum-symm geo-lt-angle_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf hp-angle-sum_wf geo-point_wf hp-angle-sum-lt3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis sqequalRule because_Cache universeIsType isectElimination applyEquality instantiate independent_isectElimination inhabitedIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
    (x'  \#  y'z'
    {}\mRightarrow{}  abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  ijk  \mcong{}\msuba{}  i'j'k'
    {}\mRightarrow{}  a'  \#  b'c'
    {}\mRightarrow{}  x  \#  yz
    {}\mRightarrow{}  i  \#  jk
    {}\mRightarrow{}  x'y'z'  <  xyz
    {}\mRightarrow{}  abc  <  a'b'c')



Date html generated: 2019_10_16-PM-02_24_40
Last ObjectModification: 2019_08_26-PM-05_14_42

Theory : euclidean!plane!geometry


Home Index