Nuprl Lemma : cong-angle-preserves-lsep_strong
∀g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (x # yz 
⇒ abc ≅a xyz 
⇒ a # bc)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
euclidean-plane: EuclideanPlane
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
Euclid-Prop20_cycle, 
geo-cong-angle_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
cong-angle-out-exists-cong3, 
geo-cong-preserves-lt, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-add-length_wf, 
geo-congruent-iff-length, 
geo-length-flip, 
Prop22-inequality-implies-triangle, 
geo-lt_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
geo-add-length-comm, 
subtype_rel_self, 
iff_weakening_equal, 
geo-add-length_functionality_wrt_cong, 
out-preserves-lsep, 
lsep-symmetry, 
lsep-all-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
universeIsType, 
isectElimination, 
sqequalRule, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
because_Cache, 
setElimination, 
rename, 
equalitySymmetry, 
equalityTransitivity, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (x  \#  yz  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  a  \#  bc)
Date html generated:
2019_10_16-PM-02_23_46
Last ObjectModification:
2019_03_14-PM-10_55_49
Theory : euclidean!plane!geometry
Home
Index