Nuprl Lemma : cong-angle-preserves-lsep_strong

g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (x yz  abc ≅a xyz  bc)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] basic-geometry: BasicGeometry prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a exists: x:A. B[x] geo-cong-tri: Cong3(abc,a'b'c') euclidean-plane: EuclideanPlane uiff: uiff(P;Q) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  Euclid-Prop20_cycle geo-cong-angle_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf cong-angle-out-exists-cong3 geo-cong-preserves-lt geo-length_wf geo-mk-seg_wf geo-add-length_wf geo-congruent-iff-length geo-length-flip Prop22-inequality-implies-triangle geo-lt_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm subtype_rel_self iff_weakening_equal geo-add-length_functionality_wrt_cong out-preserves-lsep lsep-symmetry lsep-all-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination universeIsType isectElimination sqequalRule applyEquality instantiate independent_isectElimination inhabitedIsType because_Cache setElimination rename equalitySymmetry equalityTransitivity lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (x  \#  yz  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  a  \#  bc)



Date html generated: 2019_10_16-PM-02_23_46
Last ObjectModification: 2019_03_14-PM-10_55_49

Theory : euclidean!plane!geometry


Home Index