Nuprl Lemma : hp-angle-sum-symm

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k:Point.  (abc xyz ≅ ijk  jk  xyz abc ≅ ijk)


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q hp-angle-sum: abc xyz ≅ def member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: exists: x:A. B[x] and: P ∧ Q basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane geo-out: out(p ab) cand: c∧ B basic-geometry-: BasicGeometry- iff: ⇐⇒ Q uiff: uiff(P;Q) or: P ∨ Q geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz geo-strict-between: a-b-c
Lemmas referenced :  geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf hp-angle-sum_wf geo-point_wf geo-proper-extend-exists geo-O_wf geo-X_wf geo-sep-sym geo-sep-O-X geo-strict-between-sep3 geo-congruent-sep geo-strict-between-sep1 geo-out_wf geo-cong-angle_wf geo-congruent_wf geo-sep_wf geo-out-iff-between1 geo-between-symmetry geo-strict-between-implies-between geo-out_transitivity geo-out_inversion out-cong-angle euclidean-plane-axioms geo-cong-angle-symm2 geo-cong-angle-transitivity geo-cong-angle-symmetry geo-congruent-iff-length geo-length-flip geo-sas2 out-preserves-lsep lsep-symmetry lsep-all-sym geo-sep-or colinear-lsep geo-strict-between-sep2 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than lsep-implies-sep geo-congruent-between-exists geo-congruent-symmetry geo-between_wf geo-cong-tri_wf geo-inner-five-segment geo-between-trivial geo-strict-between_wf geo-between-out geo-between-sep geo-out_weakening geo-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution universeIsType cut introduction extract_by_obid isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule dependent_functionElimination inhabitedIsType because_Cache productElimination setElimination rename independent_functionElimination dependent_pairFormation_alt independent_pairFormation productIsType equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt unionElimination isect_memberEquality_alt voidElimination natural_numberEquality approximateComputation lambdaEquality_alt

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k:Point.    (abc  +  xyz  \mcong{}  ijk  {}\mRightarrow{}  i  \#  jk  {}\mRightarrow{}  xyz  +  abc  \mcong{}  ijk)



Date html generated: 2019_10_16-PM-02_04_22
Last ObjectModification: 2019_06_05-PM-00_33_42

Theory : euclidean!plane!geometry


Home Index