Nuprl Lemma : hp-angle-sum-lt3

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
  (a' b'c'
   abc xyz ≅ ijk
   a'b'c' x'y'z' ≅ i'j'k'
   ijk ≅a i'j'k'
   bc
   yz
   jk
   abc < a'b'c'
   x'y'z' < xyz)


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  basic-geometry: BasicGeometry uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q exists: x:A. B[x] hp-angle-sum: abc xyz ≅ def implies:  Q all: x:A. B[x] geo-lt-angle: abc < xyz geo-out: out(p ab) basic-geometry-: BasicGeometry- cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m geo-cong-angle: abc ≅a xyz uiff: uiff(P;Q) geo-tri: Triangle(a;b;c) squash: T true: True geo-strict-between: a-b-c geo-lsep: bc oriented-plane: OrientedPlane l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) less_than: a < b ge: i ≥  append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  geo-point_wf hp-angle-sum_wf geo-cong-angle_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-lsep_wf geo-lt-angle_wf geo-cong-angle-preserves-lt-angle2 geo-cong-angle-symm2 cong-angle-preserves-lsep_strong geo-proper-extend-exists geo-sep-sym geo-strict-between-sep3 geo-out-if-between geo-strict-between-sym out-preserves-lsep lsep-symmetry lsep-all-sym colinear-lsep-cycle geo-strict-between-sep2 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than lsep-implies-sep geo-out_inversion euclidean-plane-axioms geo-sas geo-congruent-iff-length geo-cong-angle-transitivity geo-between-sep out-preserves-angle-cong_1 geo-between_wf geo-strict-between-sep1 geo-five-segment geo-between-symmetry geo-strict-between-implies-between geo-length-flip geo-between-trivial geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-congruent_wf geo-out_weakening geo-eq_weakening geo-out_transitivity geo-between-implies-colinear geo-between-out left-symmetry geo-left-out-4 between-preserves-left-2 between-preserves-left-1 geo-left_wf between-preserves-left-4 between-preserves-left-3 unique-angles-in-half-plane-better2 geo-cong-angle-symmetry geo-cong-angle-symm3 unique-angles-in-half-plane-better geo-out-interior-point-exists geo-out-colinear not-out-if-lsep lsep-not-between geo-out_wf geo-sep_wf out-cong-angle lt-angle-implies-between-if-out geo-colinear-append cons_wf nil_wf length_wf select_wf nat_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma l_member_wf list_ind_cons_lemma list_ind_nil_lemma geo-between-lt-angle geo-strict-between-trans geo-cong-angle-preserves-lt-angle cong-tri-implies-cong-angle2
Rules used in proof :  inhabitedIsType because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction universeIsType cut thin productElimination sqequalHypSubstitution lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination rename isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType equalitySymmetry functionIsType equalityTransitivity imageElimination imageMemberEquality baseClosed setElimination equalityIstype int_eqEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
    (a'  \#  b'c'
    {}\mRightarrow{}  abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  ijk  \mcong{}\msuba{}  i'j'k'
    {}\mRightarrow{}  a  \#  bc
    {}\mRightarrow{}  x  \#  yz
    {}\mRightarrow{}  i  \#  jk
    {}\mRightarrow{}  abc  <  a'b'c'
    {}\mRightarrow{}  x'y'z'  <  xyz)



Date html generated: 2019_10_16-PM-02_24_22
Last ObjectModification: 2019_10_02-AM-10_31_31

Theory : euclidean!plane!geometry


Home Index