Nuprl Lemma : lsep-cong-angle-implies-sep

g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (a bc  abc ≅a xyz  x ≠ z)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q geo-cong-tri: Cong3(abc,a'b'c') basic-geometry: BasicGeometry uall: [x:A]. B[x] uiff: uiff(P;Q) uimplies: supposing a guard: {T} cand: c∧ B prop: subtype_rel: A ⊆B
Lemmas referenced :  cong-angle-out-exists-cong3 geo-congruent-sep geo-congruent-iff-length geo-length-flip out-preserves-lsep lsep-symmetry lsep-all-sym geo-out_inversion euclidean-plane-axioms geo-sep-sym lsep-implies-sep geo-cong-angle_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination because_Cache sqequalRule isectElimination independent_isectElimination equalityTransitivity equalitySymmetry universeIsType applyEquality instantiate inhabitedIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (a  \#  bc  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  x  \mneq{}  z)



Date html generated: 2019_10_16-PM-01_50_37
Last ObjectModification: 2018_11_19-PM-03_50_03

Theory : euclidean!plane!geometry


Home Index