Nuprl Lemma : not-dist-lemma

g:EuclideanPlane. ∀a,b,c,d:Point.  ((¬D(a;b;b;b;c;d))  ab > cd))


Proof




Definitions occuring in Statement :  dist: D(a;b;c;d;e;f) euclidean-plane: EuclideanPlane geo-gt: cd > ab geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False geo-gt: cd > ab dist: D(a;b;c;d;e;f) squash: T exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a cand: c∧ B basic-geometry: BasicGeometry uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  geo-gt_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf not_wf dist_wf geo-point_wf geo-sep-sym geo-sep_wf geo-between-trivial geo-congruent-refl geo-congruent-flip geo-congruent-iff-length geo-between_wf geo-congruent_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution imageElimination independent_functionElimination productElimination voidElimination hypothesis because_Cache introduction extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule dependent_pairFormation dependent_functionElimination dependent_set_memberEquality independent_pairFormation equalitySymmetry productEquality setElimination rename setEquality lambdaEquality

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    ((\mneg{}D(a;b;b;b;c;d))  {}\mRightarrow{}  (\mneg{}ab  >  cd))



Date html generated: 2019_10_16-PM-02_48_09
Last ObjectModification: 2018_09_15-PM-03_16_12

Theory : euclidean!plane!geometry


Home Index