Nuprl Lemma : pgeo-lsep-implies-plsep-or

g:ProjectivePlane. ∀p:Point. ∀l,m:Line. ∀s:l ≠ m.  (p ≠ l ∧  (p ≠ m ∨ p ≠ l))


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-meet: l ∧ m pgeo-lsep: l ≠ m pgeo-psep: a ≠ b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  uimplies: supposing a pgeo-psep: a ≠ b subtype_rel: A ⊆B uall: [x:A]. B[x] prop: guard: {T} or: P ∨ Q and: P ∧ Q exists: x:A. B[x] pgeo-lsep: l ≠ m member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-line_wf pgeo-lsep_wf pgeo-incident_wf pgeo-point_wf pgeo-meet_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-psep_wf pgeo-plsep_wf LP-sep-or2 pgeo-meet-incident pgeo-plsep-to-lsep pgeo-meet-plsep-sym pgeo-plsep-to-psep pgeo-psep-or pgeo-lsep-implies-plsep Error :pgeo-psep-sym,  pgeo-meet-psep-sym
Rules used in proof :  productEquality setEquality setElimination lambdaEquality independent_isectElimination instantiate applyEquality isectElimination inrFormation sqequalRule unionElimination because_Cache rename productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inlFormation

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p:Point.  \mforall{}l,m:Line.  \mforall{}s:l  \mneq{}  m.    (p  \mneq{}  l  \mwedge{}  m  {}\mRightarrow{}  (p  \mneq{}  m  \mvee{}  p  \mneq{}  l))



Date html generated: 2018_05_22-PM-00_52_51
Last ObjectModification: 2017_11_28-PM-05_27_58

Theory : euclidean!plane!geometry


Home Index