Nuprl Lemma : pgeo-lsep-implies-plsep-or
∀g:ProjectivePlane. ∀p:Point. ∀l,m:Line. ∀s:l ≠ m.  (p ≠ l ∧ m 
⇒ (p ≠ m ∨ p ≠ l))
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-meet: l ∧ m
, 
pgeo-lsep: l ≠ m
, 
pgeo-psep: a ≠ b
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
pgeo-psep: a ≠ b
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
pgeo-lsep: l ≠ m
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-line_wf, 
pgeo-lsep_wf, 
pgeo-incident_wf, 
pgeo-point_wf, 
pgeo-meet_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-psep_wf, 
pgeo-plsep_wf, 
LP-sep-or2, 
pgeo-meet-incident, 
pgeo-plsep-to-lsep, 
pgeo-meet-plsep-sym, 
pgeo-plsep-to-psep, 
pgeo-psep-or, 
pgeo-lsep-implies-plsep, 
Error :pgeo-psep-sym, 
pgeo-meet-psep-sym
Rules used in proof : 
productEquality, 
setEquality, 
setElimination, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
inrFormation, 
sqequalRule, 
unionElimination, 
because_Cache, 
rename, 
productElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inlFormation
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p:Point.  \mforall{}l,m:Line.  \mforall{}s:l  \mneq{}  m.    (p  \mneq{}  l  \mwedge{}  m  {}\mRightarrow{}  (p  \mneq{}  m  \mvee{}  p  \mneq{}  l))
Date html generated:
2018_05_22-PM-00_52_51
Last ObjectModification:
2017_11_28-PM-05_27_58
Theory : euclidean!plane!geometry
Home
Index