Nuprl Lemma : pgeo-triangle-axiom1-dual

g:ProjectivePlane. ∀l,m,n:Line. ∀s:l ≠ m. ∀s1:m ≠ n.  (l ∧ m ≠  m ∧ n ≠ l)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-meet: l ∧ m pgeo-lsep: l ≠ m pgeo-plsep: a ≠ b pgeo-line: Line all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  and: P ∧ Q projective-plane: ProjectivePlane uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] or: P ∨ Q false: False not: ¬A pgeo-incident: b
Lemmas referenced :  pgeo-line_wf pgeo-lsep_wf pgeo-incident_wf pgeo-point_wf pgeo-meet_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-plsep_wf PL-sep-or pgeo-meet-incident pgeo-meet-plsep-sym LP-sep-or2 pgeo-psep-or Error :pgeo-psep-sym,  pgeo-meet-psep-sym pgeo-lsep-implies-plsep
Rules used in proof :  productEquality because_Cache setEquality lambdaEquality rename setElimination dependent_functionElimination sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination independent_functionElimination voidElimination productElimination

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l,m,n:Line.  \mforall{}s:l  \mneq{}  m.  \mforall{}s1:m  \mneq{}  n.    (l  \mwedge{}  m  \mneq{}  n  {}\mRightarrow{}  m  \mwedge{}  n  \mneq{}  l)



Date html generated: 2018_05_22-PM-00_47_19
Last ObjectModification: 2017_11_20-PM-03_39_04

Theory : euclidean!plane!geometry


Home Index