Nuprl Lemma : proj-point-sep-irrefl

e:EuclideanParPlane. ∀x:Point Line.  proj-point-sep(e;x;x))


Proof




Definitions occuring in Statement :  proj-point-sep: proj-point-sep(eu;p;q) euclidean-parallel-plane: EuclideanParPlane geo-line: Line geo-point: Point all: x:A. B[x] not: ¬A union: left right
Definitions unfolded in proof :  uimplies: supposing a guard: {T} prop: subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q euclidean-parallel-plane: EuclideanParPlane member: t ∈ T proj-point-sep: proj-point-sep(eu;p;q) false: False implies:  Q not: ¬A all: x:A. B[x]
Lemmas referenced :  geo-line_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf euclidean-parallel-plane_wf subtype_rel_transitivity euclidean-planes-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf proj-point-sep_wf geoline-subtype1 geo-intersect-irreflexive euclidean-plane-axioms
Rules used in proof :  independent_isectElimination instantiate unionEquality voidElimination independent_functionElimination because_Cache applyEquality isectElimination productElimination hypothesis hypothesisEquality rename setElimination dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule unionElimination thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}x:Point  +  Line.    (\mneg{}proj-point-sep(e;x;x))



Date html generated: 2018_05_22-PM-01_13_41
Last ObjectModification: 2018_05_21-PM-02_22_32

Theory : euclidean!plane!geometry


Home Index