Nuprl Lemma : geo-intersect-irreflexive

[g:EuclideanPlane]. ∀[m:LINE].  \/ m)


Proof




Definitions occuring in Statement :  geo-intersect: \/ M geoline: LINE euclidean-plane: EuclideanPlane uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False prop: exists: x:A. B[x] and: P ∧ Q all: x:A. B[x] iff: ⇐⇒ Q basic-geometry-: BasicGeometry- geo-line: Line subtype_rel: A ⊆B guard: {T} uimplies: supposing a uiff: uiff(P;Q) cand: c∧ B pi1: fst(t) pi2: snd(t) geoline: LINE quotient: x,y:A//B[x; y] rev_implies:  Q
Lemmas referenced :  geo-intersect_wf geoline_wf euclidean-plane_wf geo-intersect-iff2 geo-strict-between-sep1 geo-line-eq-geoline geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-line-eq-to-col member_wf geo-line_wf geo-line-eq_wf not-lsep-iff-colinear lsep-all-sym2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality productElimination rename dependent_pairEquality applyEquality instantiate independent_isectElimination productEquality independent_pairFormation equalityTransitivity equalitySymmetry pertypeElimination

Latex:
\mforall{}[g:EuclideanPlane].  \mforall{}[m:LINE].    (\mneg{}m  \mbackslash{}/  m)



Date html generated: 2018_05_22-PM-01_06_47
Last ObjectModification: 2018_05_10-PM-06_26_16

Theory : euclidean!plane!geometry


Home Index