Nuprl Lemma : geo-intersect-iff2
∀e:EuclideanPlane. ∀p,l:LINE.
  (p \/ l
  
⇐⇒ ∃a,b,c,d,v:Point
       (a-v-b ∧ c-v-d ∧ a I p ∧ b I p ∧ c I l ∧ d I l ∧ a leftof cd ∧ b leftof dc ∧ c leftof ba ∧ d leftof ab))
Proof
Definitions occuring in Statement : 
geo-intersect: L \/ M
, 
geo-incident: p I L
, 
geoline: LINE
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
geo-strict-between: a-b-c
, 
basic-geometry-: BasicGeometry-
, 
or: P ∨ Q
Lemmas referenced : 
geo-strict-between_wf, 
geo-incident_wf, 
geo-left_wf, 
exists_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-intersect-iff, 
geo-intersect_wf, 
iff_wf, 
geoline_wf, 
left-between-triangle2, 
all_wf, 
left-all-symmetry, 
geo-strict-between-sym, 
left-convex, 
or_wf, 
geo-between_wf, 
geo-sep_wf, 
geo-between-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
hypothesis, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
instantiate, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
inlFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}p,l:LINE.
    (p  \mbackslash{}/  l
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b,c,d,v:Point
              (a-v-b
              \mwedge{}  c-v-d
              \mwedge{}  a  I  p
              \mwedge{}  b  I  p
              \mwedge{}  c  I  l
              \mwedge{}  d  I  l
              \mwedge{}  a  leftof  cd
              \mwedge{}  b  leftof  dc
              \mwedge{}  c  leftof  ba
              \mwedge{}  d  leftof  ab))
Date html generated:
2018_05_22-PM-01_05_44
Last ObjectModification:
2018_05_10-PM-06_01_28
Theory : euclidean!plane!geometry
Home
Index