Nuprl Lemma : geo-intersect-iff2

e:EuclideanPlane. ∀p,l:LINE.
  (p \/ l
  ⇐⇒ ∃a,b,c,d,v:Point
       (a-v-b ∧ c-v-d ∧ p ∧ p ∧ l ∧ l ∧ leftof cd ∧ leftof dc ∧ leftof ba ∧ leftof ab))


Proof




Definitions occuring in Statement :  geo-intersect: \/ M geo-incident: L geoline: LINE euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T cand: c∧ B prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} uimplies: supposing a rev_implies:  Q geo-strict-between: a-b-c basic-geometry-: BasicGeometry- or: P ∨ Q
Lemmas referenced :  geo-strict-between_wf geo-incident_wf geo-left_wf exists_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-intersect-iff geo-intersect_wf iff_wf geoline_wf left-between-triangle2 all_wf left-all-symmetry geo-strict-between-sym left-convex or_wf geo-between_wf geo-sep_wf geo-between-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality hypothesis productEquality introduction extract_by_obid isectElimination applyEquality because_Cache sqequalRule lambdaEquality instantiate independent_isectElimination addLevel impliesFunctionality dependent_functionElimination independent_functionElimination functionEquality inlFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}p,l:LINE.
    (p  \mbackslash{}/  l
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b,c,d,v:Point
              (a-v-b
              \mwedge{}  c-v-d
              \mwedge{}  a  I  p
              \mwedge{}  b  I  p
              \mwedge{}  c  I  l
              \mwedge{}  d  I  l
              \mwedge{}  a  leftof  cd
              \mwedge{}  b  leftof  dc
              \mwedge{}  c  leftof  ba
              \mwedge{}  d  leftof  ab))



Date html generated: 2018_05_22-PM-01_05_44
Last ObjectModification: 2018_05_10-PM-06_01_28

Theory : euclidean!plane!geometry


Home Index