Nuprl Lemma : sq_stable__geo-left-axioms
∀g:EuclideanPlane
  SqStable((∀a,b,c:Point.  (¬a # bc 
⇐⇒ Colinear(a;b;c)))
  ∧ (∀a,b,c:Point.  (a leftof bc 
⇒ b leftof ca))
  ∧ (∀a,b,c:Point.  (a leftof bc 
⇒ b # c))
  ∧ (∀a,b,x,y,z:Point.  (x leftof ab 
⇒ y leftof ab 
⇒ B(xzy) 
⇒ z # ab))
  ∧ (∀a,b,c,y:Point.  (a # bc 
⇒ y # b 
⇒ Colinear(y;a;b) 
⇒ y # bc)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-between: B(abc)
, 
geo-lsep: a # bc
, 
geo-left: a leftof bc
, 
geo-sep: a # b
, 
geo-point: Point
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
euclidean-plane: EuclideanPlane
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable__geo-lsep, 
sq_stable__geo-sep, 
sq_stable__geo-left, 
sq_stable__colinear, 
sq_stable__not, 
sq_stable__iff, 
sq_stable__all, 
istype-void, 
geo-between_wf, 
geo-sep_wf, 
geo-left_wf, 
geo-colinear_wf, 
geo-lsep_wf, 
not_wf, 
iff_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
sq_stable__and
Rules used in proof : 
rename, 
setElimination, 
dependent_functionElimination, 
lambdaEquality_alt, 
independent_functionElimination, 
productIsType, 
inhabitedIsType, 
universeIsType, 
functionIsType, 
productEquality, 
isect_memberEquality_alt, 
because_Cache, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanPlane
    SqStable((\mforall{}a,b,c:Point.    (\mneg{}a  \#  bc  \mLeftarrow{}{}\mRightarrow{}  Colinear(a;b;c)))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \#  c))
    \mwedge{}  (\mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  B(xzy)  {}\mRightarrow{}  z  \#  ab))
    \mwedge{}  (\mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \#  b  {}\mRightarrow{}  Colinear(y;a;b)  {}\mRightarrow{}  y  \#  bc)))
Date html generated:
2019_10_30-AM-06_18_27
Last ObjectModification:
2019_10_29-PM-02_52_38
Theory : euclidean!plane!geometry
Home
Index