Nuprl Lemma : sq_stable__geo-left-axioms

g:EuclideanPlane
  SqStable((∀a,b,c:Point.  bc ⇐⇒ Colinear(a;b;c)))
  ∧ (∀a,b,c:Point.  (a leftof bc  leftof ca))
  ∧ (∀a,b,c:Point.  (a leftof bc  c))
  ∧ (∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  ab))
  ∧ (∀a,b,c,y:Point.  (a bc   Colinear(y;a;b)  bc)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-between: B(abc) geo-lsep: bc geo-left: leftof bc geo-sep: b geo-point: Point sq_stable: SqStable(P) all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  euclidean-plane: EuclideanPlane so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q false: False not: ¬A iff: ⇐⇒ Q implies:  Q and: P ∧ Q uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  sq_stable__geo-lsep sq_stable__geo-sep sq_stable__geo-left sq_stable__colinear sq_stable__not sq_stable__iff sq_stable__all istype-void geo-between_wf geo-sep_wf geo-left_wf geo-colinear_wf geo-lsep_wf not_wf iff_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf sq_stable__and
Rules used in proof :  rename setElimination dependent_functionElimination lambdaEquality_alt independent_functionElimination productIsType inhabitedIsType universeIsType functionIsType productEquality isect_memberEquality_alt because_Cache independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality functionEquality sqequalRule thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane
    SqStable((\mforall{}a,b,c:Point.    (\mneg{}a  \#  bc  \mLeftarrow{}{}\mRightarrow{}  Colinear(a;b;c)))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca))
    \mwedge{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \#  c))
    \mwedge{}  (\mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  B(xzy)  {}\mRightarrow{}  z  \#  ab))
    \mwedge{}  (\mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \#  b  {}\mRightarrow{}  Colinear(y;a;b)  {}\mRightarrow{}  y  \#  bc)))



Date html generated: 2019_10_30-AM-06_18_27
Last ObjectModification: 2019_10_29-PM-02_52_38

Theory : euclidean!plane!geometry


Home Index