Nuprl Lemma : fun-sep-co-trans

[A:Type]. ∀ss:SeparationSpace. ∀f,g,h:A ⟶ Point.  (fun-sep(ss;A;f;g)  (fun-sep(ss;A;f;h) ∨ fun-sep(ss;A;g;h)))


Proof




Definitions occuring in Statement :  fun-sep: fun-sep(ss;A;f;g) ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} prop: or: P ∨ Q member: t ∈ T exists: x:A. B[x] fun-sep: fun-sep(ss;A;f;g) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf fun-sep_wf ss-sep_wf ss-sep-or
Rules used in proof :  universeEquality functionEquality inrFormation sqequalRule isectElimination dependent_pairFormation inlFormation unionElimination hypothesis independent_functionElimination cumulativity functionExtensionality applyEquality hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type]
    \mforall{}ss:SeparationSpace.  \mforall{}f,g,h:A  {}\mrightarrow{}  Point.
        (fun-sep(ss;A;f;g)  {}\mRightarrow{}  (fun-sep(ss;A;f;h)  \mvee{}  fun-sep(ss;A;g;h)))



Date html generated: 2016_11_08-AM-09_11_52
Last ObjectModification: 2016_11_02-AM-10_37_12

Theory : inner!product!spaces


Home Index