Nuprl Lemma : fun-sep-co-trans
∀[A:Type]. ∀ss:SeparationSpace. ∀f,g,h:A ⟶ Point.  (fun-sep(ss;A;f;g) 
⇒ (fun-sep(ss;A;f;h) ∨ fun-sep(ss;A;g;h)))
Proof
Definitions occuring in Statement : 
fun-sep: fun-sep(ss;A;f;g)
, 
ss-point: Point
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
prop: ℙ
, 
or: P ∨ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
fun-sep: fun-sep(ss;A;f;g)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
ss-point_wf, 
fun-sep_wf, 
ss-sep_wf, 
ss-sep-or
Rules used in proof : 
universeEquality, 
functionEquality, 
inrFormation, 
sqequalRule, 
isectElimination, 
dependent_pairFormation, 
inlFormation, 
unionElimination, 
hypothesis, 
independent_functionElimination, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Type]
    \mforall{}ss:SeparationSpace.  \mforall{}f,g,h:A  {}\mrightarrow{}  Point.
        (fun-sep(ss;A;f;g)  {}\mRightarrow{}  (fun-sep(ss;A;f;h)  \mvee{}  fun-sep(ss;A;g;h)))
Date html generated:
2016_11_08-AM-09_11_52
Last ObjectModification:
2016_11_02-AM-10_37_12
Theory : inner!product!spaces
Home
Index