Nuprl Lemma : ip-congruent-sym
∀[rv:InnerProductSpace]. ∀[a,b:Point(rv)].  ab=ba
Proof
Definitions occuring in Statement : 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ip-congruent: ab=cd
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
rv-norm-difference-symmetry, 
req_witness, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point(rv)].    ab=ba
Date html generated:
2020_05_20-PM-01_13_15
Last ObjectModification:
2019_12_10-AM-00_24_56
Theory : inner!product!spaces
Home
Index