Nuprl Lemma : ip-congruent-sym

[rv:InnerProductSpace]. ∀[a,b:Point(rv)].  ab=ba


Proof




Definitions occuring in Statement :  ip-congruent: ab=cd inner-product-space: InnerProductSpace uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-congruent: ab=cd subtype_rel: A ⊆B implies:  Q guard: {T} uimplies: supposing a
Lemmas referenced :  rv-norm-difference-symmetry req_witness rv-norm_wf rv-sub_wf inner-product-space_subtype Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry because_Cache independent_functionElimination isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate independent_isectElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b:Point(rv)].    ab=ba



Date html generated: 2020_05_20-PM-01_13_15
Last ObjectModification: 2019_12_10-AM-00_24_56

Theory : inner!product!spaces


Home Index