Nuprl Lemma : rv-sep-or
∀rv:InnerProductSpace. ∀a:Point. ∀b:{b:Point| a # b} . ∀c:Point.  (a # c ∨ b # c)
Proof
Definitions occuring in Statement : 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
ss-sep-or, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
sq_stable__rv-sep-ext, 
ss-point_wf, 
set_wf, 
ss-sep_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
setElimination, 
rename, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
because_Cache
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .  \mforall{}c:Point.    (a  \#  c  \mvee{}  b  \#  c)
Date html generated:
2017_10_04-PM-11_51_48
Last ObjectModification:
2017_03_15-PM-09_03_52
Theory : inner!product!spaces
Home
Index