Nuprl Lemma : equalf_from_lef_wf
∀[y:Type]. ∀[lef:y ⟶ y ⟶ 𝔹]. ∀[x,y:y].  (equalf_from_lef(lef;x;y) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
equalf_from_lef: equalf_from_lef(lef;x;y)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equalf_from_lef: equalf_from_lef(lef;x;y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
prop: ℙ
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
bfalse_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[y:Type].  \mforall{}[lef:y  {}\mrightarrow{}  y  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,y:y].    (equalf\_from\_lef(lef;x;y)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_22-PM-09_38_12
Last ObjectModification:
2017_03_04-PM-07_25_16
Theory : labeled!trees
Home
Index