Nuprl Lemma : lattice-meet-is-glb

l:Lattice. ∀a,b:Point(l).  greatest-lower-bound(Point(l);x,y.x ≤ y;a;b;a ∧ b)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-meet: a ∧ b lattice-point: Point(l) greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T lattice: Lattice uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a cand: c∧ B implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] lattice-le: a ≤ b squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lattice-le-iff lattice-meet_wf equal_wf lattice-point_wf lattice-join_wf lattice-le_wf all_wf lattice_wf lattice_properties squash_wf true_wf lattice-structure_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename because_Cache hypothesis productElimination independent_isectElimination addLevel allFunctionality impliesFunctionality productEquality equalityTransitivity equalitySymmetry sqequalRule lambdaEquality functionEquality hyp_replacement applyLambdaEquality applyEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}l:Lattice.  \mforall{}a,b:Point(l).    greatest-lower-bound(Point(l);x,y.x  \mleq{}  y;a;b;a  \mwedge{}  b)



Date html generated: 2017_10_05-AM-00_31_05
Last ObjectModification: 2017_07_28-AM-09_12_54

Theory : lattices


Home Index