Nuprl Lemma : p-or_wf

[A,B:PType].  (p-or(A;B) ∈ PType)


Proof




Definitions occuring in Statement :  p-or: p-or(A;B) p-type: PType uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-type: PType quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] iff: ⇐⇒ Q prop: subtype_rel: A ⊆B so_apply: x[s1;s2] uimplies: supposing a rev_implies:  Q implies:  Q all: x:A. B[x] p-or: p-or(A;B) guard: {T} or: P ∨ Q
Lemmas referenced :  p-type_wf quotient-member-eq iff_wf equiv_rel_iff or_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin instantiate isectElimination universeEquality lambdaEquality_alt hypothesisEquality applyEquality cumulativity inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination because_Cache independent_functionElimination independent_pairFormation lambdaFormation_alt unionElimination inlFormation_alt universeIsType inrFormation_alt unionIsType productIsType equalityIsType4 functionIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[A,B:PType].    (p-or(A;B)  \mmember{}  PType)



Date html generated: 2019_10_31-AM-07_20_06
Last ObjectModification: 2018_10_15-PM-01_30_03

Theory : lattices


Home Index