Nuprl Lemma : null-formal-sum-append
∀[K:RngSig]. ∀[S:Type]. ∀[fs1,fs2:basic-formal-sum(K;S)].
  (null-formal-sum(K;S;fs1) ⇒ null-formal-sum(K;S;fs2) ⇒ null-formal-sum(K;S;fs1 + fs2))
Proof
Definitions occuring in Statement : 
null-formal-sum: null-formal-sum(K;S;fs), 
basic-formal-sum: basic-formal-sum(K;S), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
universe: Type, 
rng_sig: RngSig, 
bag-append: as + bs
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
basic-formal-sum: basic-formal-sum(K;S), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
null-formal-sum: null-formal-sum(K;S;fs), 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
squash: ↓T, 
top: Top, 
true: True
Lemmas referenced : 
rng_sig_wf, 
basic-formal-sum_wf, 
null-formal-sum_wf, 
exists_wf, 
zero-bfs_wf, 
neg-bfs_wf, 
bag_wf, 
equal_wf, 
rng_car_wf, 
bag-append_wf, 
iff_weakening_equal, 
bag-append-ac, 
bag-append-assoc2, 
squash_wf, 
true_wf, 
neg-bfs-append, 
zero-bfs-append
Rules used in proof : 
universeEquality, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
cumulativity, 
hypothesis, 
hypothesisEquality, 
productEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
dependent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
natural_numberEquality, 
levelHypothesis, 
equalityUniverse
Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[fs1,fs2:basic-formal-sum(K;S)].
    (null-formal-sum(K;S;fs1)  {}\mRightarrow{}  null-formal-sum(K;S;fs2)  {}\mRightarrow{}  null-formal-sum(K;S;fs1  +  fs2))
Date html generated:
2018_05_22-PM-09_47_13
Last ObjectModification:
2018_01_09-PM-06_08_50
Theory : linear!algebra
Home
Index