Nuprl Lemma : null-formal-sum-append

[K:RngSig]. ∀[S:Type]. ∀[fs1,fs2:basic-formal-sum(K;S)].
  (null-formal-sum(K;S;fs1)  null-formal-sum(K;S;fs2)  null-formal-sum(K;S;fs1 fs2))


Proof




Definitions occuring in Statement :  null-formal-sum: null-formal-sum(K;S;fs) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] implies:  Q universe: Type rng_sig: RngSig bag-append: as bs
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] basic-formal-sum: basic-formal-sum(K;S) subtype_rel: A ⊆B prop: member: t ∈ T exists: x:A. B[x] null-formal-sum: null-formal-sum(K;S;fs) implies:  Q uall: [x:A]. B[x] rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a squash: T top: Top true: True
Lemmas referenced :  rng_sig_wf basic-formal-sum_wf null-formal-sum_wf exists_wf zero-bfs_wf neg-bfs_wf bag_wf equal_wf rng_car_wf bag-append_wf iff_weakening_equal bag-append-ac bag-append-assoc2 squash_wf true_wf neg-bfs-append zero-bfs-append
Rules used in proof :  universeEquality lambdaEquality sqequalRule applyEquality equalitySymmetry equalityTransitivity because_Cache cumulativity hypothesis hypothesisEquality productEquality isectElimination extract_by_obid introduction cut dependent_pairFormation thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination independent_isectElimination baseClosed imageMemberEquality imageElimination voidEquality voidElimination isect_memberEquality natural_numberEquality levelHypothesis equalityUniverse

Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[fs1,fs2:basic-formal-sum(K;S)].
    (null-formal-sum(K;S;fs1)  {}\mRightarrow{}  null-formal-sum(K;S;fs2)  {}\mRightarrow{}  null-formal-sum(K;S;fs1  +  fs2))



Date html generated: 2018_05_22-PM-09_47_13
Last ObjectModification: 2018_01_09-PM-06_08_50

Theory : linear!algebra


Home Index