Nuprl Lemma : sum-in-vs-split-shift

[k,n,m:ℤ]. ∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[f:{n..m 1-} ⟶ Point(vs)].
  Σ{f[i] n≤i≤m} = Σ{f[i] n≤i≤k} + Σ{f[k 1] 0≤i≤1} ∈ Point(vs) supposing (n ≤ k) ∧ (k ≤ m)


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B and: P ∧ Q function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q rng: Rng all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: sq_type: SQType(T) guard: {T}
Lemmas referenced :  sum-in-vs-split istype-le int_seg_wf vs-point_wf vector-space_wf rng_wf istype-int istype-void subtype_base_sq int_subtype_base decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermConstant_wf itermSubtract_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf add-swap sum-in-vs-shift
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis sqequalRule productIsType functionIsType universeIsType addEquality natural_numberEquality setElimination rename dependent_functionElimination inhabitedIsType isect_memberEquality_alt voidElimination productElimination instantiate cumulativity intEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}k\}  +  \mSigma{}\{f[k  +  i  +  1]  |  0\mleq{}i\mleq{}m  -  k  +  1\}  supposing  (n  \mleq{}  k)  \mwedge{}  (k  \mleq{}  m)



Date html generated: 2019_10_31-AM-06_26_20
Last ObjectModification: 2019_08_08-PM-00_32_17

Theory : linear!algebra


Home Index