Nuprl Lemma : sum-in-vs-split-shift
∀[k,n,m:ℤ]. ∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[f:{n..m + 1-} ⟶ Point(vs)].
  Σ{f[i] | n≤i≤m} = Σ{f[i] | n≤i≤k} + Σ{f[k + i + 1] | 0≤i≤m - k + 1} ∈ Point(vs) supposing (n ≤ k) ∧ (k ≤ m)
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
rng: Rng
, 
all: ∀x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
sum-in-vs-split, 
istype-le, 
int_seg_wf, 
vs-point_wf, 
vector-space_wf, 
rng_wf, 
istype-int, 
istype-void, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
add-swap, 
sum-in-vs-shift
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
addEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
inhabitedIsType, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
instantiate, 
cumulativity, 
intEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}k\}  +  \mSigma{}\{f[k  +  i  +  1]  |  0\mleq{}i\mleq{}m  -  k  +  1\}  supposing  (n  \mleq{}  k)  \mwedge{}  (k  \mleq{}  m)
Date html generated:
2019_10_31-AM-06_26_20
Last ObjectModification:
2019_08_08-PM-00_32_17
Theory : linear!algebra
Home
Index