Nuprl Lemma : sum-in-vs-shift

[k,n,m:ℤ]. ∀[f,vs:Top].  {f[i] n≤i≤m} ~ Σ{f[i k] k≤i≤k})


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} uall: [x:A]. B[x] top: Top so_apply: x[s] subtract: m add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] sum-in-vs: Σ{f[i] n≤i≤m} vs-bag-add: Σ{f[b] b ∈ bs} member: t ∈ T top: Top subtype_rel: A ⊆B and: P ∧ Q prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] bag-map: bag-map(f;bs) squash: T all: x:A. B[x] true: True cand: c∧ B decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False guard: {T} iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than: a < b le: A ≤ B sq_type: SQType(T)
Lemmas referenced :  bag-summation-map istype-void from-upto_wf subtract_wf subtype_rel_list le_wf less_than_wf top_wf istype-le istype-less_than istype-top istype-int subtype_base_sq list_wf list_subtype_base set_subtype_base int_subtype_base equal_wf squash_wf true_wf istype-universe add-comm map_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_formula_prop_wf decidable__lt intformless_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_constant_lemma subtype_rel_self iff_weakening_equal from-upto-shift add-associates minus-one-mul add-swap add-commutes add-mul-special zero-mul zero-add subtype_rel_list_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality_alt voidElimination hypothesis hypothesisEquality addEquality because_Cache closedConclusion natural_numberEquality applyEquality setEquality intEquality productEquality independent_isectElimination lambdaEquality_alt setIsType productIsType inhabitedIsType instantiate cumulativity imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_functionElimination imageMemberEquality baseClosed lambdaFormation_alt setElimination rename productElimination dependent_set_memberEquality_alt unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality independent_pairFormation multiplyEquality minusEquality

Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[f,vs:Top].    (\mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  \msim{}  \mSigma{}\{f[i  +  k]  |  n  -  k\mleq{}i\mleq{}m  -  k\})



Date html generated: 2019_10_31-AM-06_26_17
Last ObjectModification: 2019_08_08-PM-00_26_51

Theory : linear!algebra


Home Index