Nuprl Lemma : sum-in-vs-shift
∀[k,n,m:ℤ]. ∀[f,vs:Top].  (Σ{f[i] | n≤i≤m} ~ Σ{f[i + k] | n - k≤i≤m - k})
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
subtract: n - m
, 
add: n + m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag-map: bag-map(f;bs)
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
true: True
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
less_than: a < b
, 
le: A ≤ B
, 
sq_type: SQType(T)
Lemmas referenced : 
bag-summation-map, 
istype-void, 
from-upto_wf, 
subtract_wf, 
subtype_rel_list, 
le_wf, 
less_than_wf, 
top_wf, 
istype-le, 
istype-less_than, 
istype-top, 
istype-int, 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
set_subtype_base, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add-comm, 
map_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
subtype_rel_self, 
iff_weakening_equal, 
from-upto-shift, 
add-associates, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-mul-special, 
zero-mul, 
zero-add, 
subtype_rel_list_set
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
addEquality, 
because_Cache, 
closedConclusion, 
natural_numberEquality, 
applyEquality, 
setEquality, 
intEquality, 
productEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setIsType, 
productIsType, 
inhabitedIsType, 
instantiate, 
cumulativity, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
lambdaFormation_alt, 
setElimination, 
rename, 
productElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
multiplyEquality, 
minusEquality
Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[f,vs:Top].    (\mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  \msim{}  \mSigma{}\{f[i  +  k]  |  n  -  k\mleq{}i\mleq{}m  -  k\})
Date html generated:
2019_10_31-AM-06_26_17
Last ObjectModification:
2019_08_08-PM-00_26_51
Theory : linear!algebra
Home
Index