Nuprl Lemma : sum-in-vs-split
∀[n,m,k:ℤ]. ∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[f:{n..m + 1-} ⟶ Point(vs)].
  Σ{f[i] | n≤i≤m} = Σ{f[i] | n≤i≤k} + Σ{f[i] | k + 1≤i≤m} ∈ Point(vs) supposing (n ≤ k) ∧ (k ≤ m)
Proof
Definitions occuring in Statement : 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
sum-in-vs: Σ{f[i] | n≤i≤m}
, 
bag-append: as + bs
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
rng: Rng
Lemmas referenced : 
from-upto-split, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
from-upto_wf, 
list-subtype-bag, 
le_wf, 
less_than_wf, 
int_seg_wf, 
subtype_rel_sets_simple, 
lelt_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
less-iff-le, 
add-associates, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel2, 
istype-le, 
istype-less_than, 
not-le-2, 
le-add-cancel, 
vs-bag-add-append, 
vs-point_wf, 
vector-space_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
setEquality, 
intEquality, 
productEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
imageElimination, 
minusEquality, 
productIsType, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isectIsTypeImplies, 
functionIsType, 
setElimination, 
rename
Latex:
\mforall{}[n,m,k:\mBbbZ{}].  \mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}k\}  +  \mSigma{}\{f[i]  |  k  +  1\mleq{}i\mleq{}m\}  supposing  (n  \mleq{}  k)  \mwedge{}  (k  \mleq{}  m)
Date html generated:
2019_10_31-AM-06_26_14
Last ObjectModification:
2019_08_08-PM-00_12_44
Theory : linear!algebra
Home
Index