Nuprl Lemma : sum-in-vs-split

[n,m,k:ℤ]. ∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[f:{n..m 1-} ⟶ Point(vs)].
  Σ{f[i] n≤i≤m} = Σ{f[i] n≤i≤k} + Σ{f[i] 1≤i≤m} ∈ Point(vs) supposing (n ≤ k) ∧ (k ≤ m)


Proof




Definitions occuring in Statement :  sum-in-vs: Σ{f[i] n≤i≤m} vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q sum-in-vs: Σ{f[i] n≤i≤m} bag-append: as bs all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B lelt: i ≤ j < k less_than: a < b squash: T le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) true: True rng: Rng
Lemmas referenced :  from-upto-split decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf from-upto_wf list-subtype-bag le_wf less_than_wf int_seg_wf subtype_rel_sets_simple lelt_wf decidable__lt istype-false not-lt-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes less-iff-le add-associates zero-add add_functionality_wrt_le le-add-cancel2 istype-le istype-less_than not-le-2 le-add-cancel vs-bag-add-append vs-point_wf vector-space_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality addEquality natural_numberEquality independent_isectElimination dependent_functionElimination because_Cache hypothesis unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality setEquality intEquality productEquality inhabitedIsType lambdaFormation_alt imageElimination minusEquality productIsType equalityTransitivity equalitySymmetry axiomEquality isectIsTypeImplies functionIsType setElimination rename

Latex:
\mforall{}[n,m,k:\mBbbZ{}].  \mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  Point(vs)].
    \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}m\}  =  \mSigma{}\{f[i]  |  n\mleq{}i\mleq{}k\}  +  \mSigma{}\{f[i]  |  k  +  1\mleq{}i\mleq{}m\}  supposing  (n  \mleq{}  k)  \mwedge{}  (k  \mleq{}  m)



Date html generated: 2019_10_31-AM-06_26_14
Last ObjectModification: 2019_08_08-PM-00_12_44

Theory : linear!algebra


Home Index