Nuprl Lemma : from-upto-split
∀[n,m,k:ℤ].  ([n, m) ~ [n, k) @ [k, m)) supposing ((k ≤ m) and (n ≤ k))
Proof
Definitions occuring in Statement : 
from-upto: [n, m), 
append: as @ bs, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
from-upto: [n, m), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
from-upto-is-nil, 
list_ind_nil_lemma, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
list_ind_cons_lemma, 
value-type-has-value, 
int-value-type, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
comment, 
unionElimination, 
because_Cache, 
productElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
callbyvalueReduce, 
isect_memberFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[n,m,k:\mBbbZ{}].    ([n,  m)  \msim{}  [n,  k)  @  [k,  m))  supposing  ((k  \mleq{}  m)  and  (n  \mleq{}  k))
Date html generated:
2017_04_17-AM-07_53_55
Last ObjectModification:
2017_02_27-PM-04_27_18
Theory : list_1
Home
Index