Nuprl Lemma : trivial-null-formal-sum

K:Rng. ∀[S:Type]. ∀fs:basic-formal-sum(K;S). null-formal-sum(K;S;fs -(fs))


Proof




Definitions occuring in Statement :  null-formal-sum: null-formal-sum(K;S;fs) neg-bfs: -(fs) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] all: x:A. B[x] universe: Type rng: Rng bag-append: as bs
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B rng: Rng top: Top zero-bfs: ss basic-formal-sum: basic-formal-sum(K;S) member: t ∈ T exists: x:A. B[x] null-formal-sum: null-formal-sum(K;S;fs) uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  rng_wf basic-formal-sum_wf exists_wf zero-bfs_wf bag_wf equal_wf bag-append_wf rng_car_wf bag-subtype-list neg-bfs_wf bag-append-empty bag-append-assoc bag_map_empty_lemma empty-bag_wf
Rules used in proof :  universeEquality lambdaEquality because_Cache productEquality applyEquality rename setElimination voidEquality voidElimination isect_memberEquality dependent_functionElimination sqequalRule hypothesis cumulativity thin isectElimination extract_by_obid introduction cut hypothesisEquality sqequalHypSubstitution dependent_pairFormation isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Rng.  \mforall{}[S:Type].  \mforall{}fs:basic-formal-sum(K;S).  null-formal-sum(K;S;fs  +  -(fs))



Date html generated: 2018_05_22-PM-09_47_20
Last ObjectModification: 2018_01_08-PM-02_28_52

Theory : linear!algebra


Home Index