Nuprl Lemma : trivial-null-formal-sum
∀K:Rng. ∀[S:Type]. ∀fs:basic-formal-sum(K;S). null-formal-sum(K;S;fs + -(fs))
Proof
Definitions occuring in Statement : 
null-formal-sum: null-formal-sum(K;S;fs)
, 
neg-bfs: -(fs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
rng: Rng
, 
bag-append: as + bs
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
rng: Rng
, 
top: Top
, 
zero-bfs: 0 * ss
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
null-formal-sum: null-formal-sum(K;S;fs)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rng_wf, 
basic-formal-sum_wf, 
exists_wf, 
zero-bfs_wf, 
bag_wf, 
equal_wf, 
bag-append_wf, 
rng_car_wf, 
bag-subtype-list, 
neg-bfs_wf, 
bag-append-empty, 
bag-append-assoc, 
bag_map_empty_lemma, 
empty-bag_wf
Rules used in proof : 
universeEquality, 
lambdaEquality, 
because_Cache, 
productEquality, 
applyEquality, 
rename, 
setElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
sqequalRule, 
hypothesis, 
cumulativity, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependent_pairFormation, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}K:Rng.  \mforall{}[S:Type].  \mforall{}fs:basic-formal-sum(K;S).  null-formal-sum(K;S;fs  +  -(fs))
Date html generated:
2018_05_22-PM-09_47_20
Last ObjectModification:
2018_01_08-PM-02_28_52
Theory : linear!algebra
Home
Index