Nuprl Lemma : vs-lift-inc
∀[S:Type]. ∀[K:Rng]. ∀[s:S]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;<s>) = (f s) ∈ Point(vs))
Proof
Definitions occuring in Statement : 
free-vs-inc: <s>, 
vs-lift: vs-lift(vs;f;fs), 
vector-space: VectorSpace(K), 
vs-point: Point(vs), 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
rng: Rng
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
comm: Comm(T;op), 
ident: Ident(T;op;id), 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
true: True, 
infix_ap: x f y, 
assoc: Assoc(T;op), 
monoid_p: IsMonoid(T;op;id), 
cand: A c∧ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
rng: Rng, 
prop: ℙ, 
squash: ↓T, 
vs-bag-add: Σ{f[b] | b ∈ bs}, 
vs-lift: vs-lift(vs;f;fs), 
free-vs-inc: <s>, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
vector-space_wf, 
vs-mul-one, 
rng_one_wf, 
vs-mul_wf, 
rng_car_wf, 
vs-add-comm, 
vs-mon_ident, 
iff_weakening_equal, 
vs-mon_assoc, 
vs-0_wf, 
vs-add_wf, 
bag-summation-single, 
vs-point_wf, 
true_wf, 
squash_wf, 
equal_wf
Rules used in proof : 
dependent_functionElimination, 
functionEquality, 
universeEquality, 
functionExtensionality, 
spreadEquality, 
cumulativity, 
productEquality, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
independent_isectElimination, 
rename, 
setElimination, 
because_Cache, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[S:Type].  \mforall{}[K:Rng].  \mforall{}[s:S].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].    (vs-lift(vs;f;<s>)  =  (f  s))
Date html generated:
2018_05_22-PM-09_46_19
Last ObjectModification:
2018_01_09-PM-00_27_56
Theory : linear!algebra
Home
Index