Nuprl Lemma : vs-lift-zero-bfs
∀[K:Rng]. ∀[S:Type]. ∀[ss:bag(S)]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;0 * ss) = 0 ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-lift: vs-lift(vs;f;fs)
, 
zero-bfs: 0 * ss
, 
vs-0: 0
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
bag: bag(T)
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
rng: Rng
, 
prop: ℙ
, 
squash: ↓T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
vs-lift: vs-lift(vs;f;fs)
, 
zero-bfs: 0 * ss
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
bag_wf, 
vector-space_wf, 
vs-bag-add_wf, 
vs-mul-zero, 
iff_weakening_equal, 
vs-0_wf, 
rng_zero_wf, 
vs-bag-add-mul, 
vs-point_wf, 
true_wf, 
squash_wf, 
equal_wf, 
bag-subtype-list, 
bag-summation-map
Rules used in proof : 
axiomEquality, 
functionEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
cumulativity, 
functionExtensionality, 
rename, 
setElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
hypothesisEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].  \mforall{}[ss:bag(S)].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].
    (vs-lift(vs;f;0  *  ss)  =  0)
Date html generated:
2018_05_22-PM-09_44_49
Last ObjectModification:
2018_01_09-PM-01_00_35
Theory : linear!algebra
Home
Index