Nuprl Lemma : vs-lift-zero-bfs

[K:Rng]. ∀[S:Type]. ∀[ss:bag(S)]. ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;0 ss) 0 ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-lift: vs-lift(vs;f;fs) zero-bfs: ss vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng bag: bag(T)
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True rng: Rng prop: squash: T so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B top: Top vs-bag-add: Σ{f[b] b ∈ bs} vs-lift: vs-lift(vs;f;fs) zero-bfs: ss member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf bag_wf vector-space_wf vs-bag-add_wf vs-mul-zero iff_weakening_equal vs-0_wf rng_zero_wf vs-bag-add-mul vs-point_wf true_wf squash_wf equal_wf bag-subtype-list bag-summation-map
Rules used in proof :  axiomEquality functionEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality because_Cache cumulativity functionExtensionality rename setElimination universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality hypothesis dependent_functionElimination applyEquality hypothesisEquality voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].  \mforall{}[ss:bag(S)].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].
    (vs-lift(vs;f;0  *  ss)  =  0)



Date html generated: 2018_05_22-PM-09_44_49
Last ObjectModification: 2018_01_09-PM-01_00_35

Theory : linear!algebra


Home Index