Nuprl Lemma : vs-neg-zero
∀[K:Rng]. ∀[vs:VectorSpace(K)].  (-(0) = 0 ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-neg: -(x), 
vs-0: 0, 
vector-space: VectorSpace(K), 
vs-point: Point(vs), 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T, 
rng: Rng
Definitions unfolded in proof : 
rng: Rng, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
true: True, 
prop: ℙ, 
squash: ↓T
Lemmas referenced : 
rng_wf, 
vector-space_wf, 
vs-zero-add, 
iff_weakening_equal, 
vs-add_wf, 
vs-0_wf, 
vs-add-neg, 
vs-point_wf, 
true_wf, 
squash_wf, 
equal_wf, 
vs-neg_wf, 
vs-cancel-add
Rules used in proof : 
because_Cache, 
axiomEquality, 
isectElimination, 
isect_memberEquality, 
sqequalRule, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].    (-(0)  =  0)
Date html generated:
2018_05_22-PM-09_41_15
Last ObjectModification:
2018_01_09-PM-01_04_20
Theory : linear!algebra
Home
Index