Nuprl Lemma : vs-neg-zero

[K:Rng]. ∀[vs:VectorSpace(K)].  (-(0) 0 ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-neg: -(x) vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng: Rng
Definitions unfolded in proof :  rng: Rng all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T
Lemmas referenced :  rng_wf vector-space_wf vs-zero-add iff_weakening_equal vs-add_wf vs-0_wf vs-add-neg vs-point_wf true_wf squash_wf equal_wf vs-neg_wf vs-cancel-add
Rules used in proof :  because_Cache axiomEquality isectElimination isect_memberEquality sqequalRule hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].    (-(0)  =  0)



Date html generated: 2018_05_22-PM-09_41_15
Last ObjectModification: 2018_01_09-PM-01_04_20

Theory : linear!algebra


Home Index