Nuprl Lemma : vs-cancel-add

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x,y,z:Point(vs)].  (z y ∈ Point(vs) ⇐⇒ y ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] iff: ⇐⇒ Q equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] rev_implies:  Q rng: Rng prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T}
Lemmas referenced :  rng_wf vector-space_wf and_wf vs-add_wf vs-point_wf equal_wf vs-neg_wf squash_wf true_wf vs-add-assoc rng_sig_wf vs-neg-add vs-zero-add iff_weakening_equal
Rules used in proof :  isect_memberEquality axiomEquality dependent_functionElimination lambdaEquality independent_pairEquality sqequalRule productElimination applyLambdaEquality dependent_set_memberEquality equalitySymmetry because_Cache hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis lambdaFormation independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution natural_numberEquality levelHypothesis equalityUniverse applyEquality imageElimination equalityTransitivity universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x,y,z:Point(vs)].    (z  +  x  =  z  +  y  \mLeftarrow{}{}\mRightarrow{}  x  =  y)



Date html generated: 2018_05_22-PM-09_41_12
Last ObjectModification: 2018_01_09-PM-01_04_25

Theory : linear!algebra


Home Index