Nuprl Lemma : vs-cancel-add
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x,y,z:Point(vs)].  (z + x = z + y ∈ Point(vs) 
⇐⇒ x = y ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
rng: Rng
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
rng_wf, 
vector-space_wf, 
and_wf, 
vs-add_wf, 
vs-point_wf, 
equal_wf, 
vs-neg_wf, 
squash_wf, 
true_wf, 
vs-add-assoc, 
rng_sig_wf, 
vs-neg-add, 
vs-zero-add, 
iff_weakening_equal
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairEquality, 
sqequalRule, 
productElimination, 
applyLambdaEquality, 
dependent_set_memberEquality, 
equalitySymmetry, 
because_Cache, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
natural_numberEquality, 
levelHypothesis, 
equalityUniverse, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x,y,z:Point(vs)].    (z  +  x  =  z  +  y  \mLeftarrow{}{}\mRightarrow{}  x  =  y)
Date html generated:
2018_05_22-PM-09_41_12
Last ObjectModification:
2018_01_09-PM-01_04_25
Theory : linear!algebra
Home
Index