Nuprl Lemma : pscm-dependent_wf

C:SmallCategory. ∀X,Delta:ps_context{j:l}(C). ∀A:{X ⊢ _}. ∀s:psc_map{j:l}(C; Delta; X).
  ((s)dep ∈ psc_map{j:l}(C; Delta.(A)s; X.A))


Proof




Definitions occuring in Statement :  pscm-dependent: (s)dep psc-adjoin: X.A pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ all: x:A. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] pscm-dependent: (s)dep uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat cat-comp: cat-comp(C) compose: g presheaf-type: {X ⊢ _} pscm-ap-type: (AF)s typed-psc-snd: tq typed-psc-fst: tp{i:l} pscm-comp: F psc-snd: q psc-fst: p pscm-ap: (s)x
Lemmas referenced :  typed-psc-fst_wf pscm-ap-type_wf typed-psc-snd_wf pscm-adjoin_wf ps_context_cumulativity2 small-category-cumulativity-2 psc-adjoin_wf presheaf-type-cumulativity2 pscm-comp_wf subtype_rel_self psc_map_wf presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache instantiate applyEquality sqequalRule setElimination rename productElimination equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Delta:ps\_context\{j:l\}(C).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}s:psc\_map\{j:l\}(C;  Delta;  X).
    ((s)dep  \mmember{}  psc\_map\{j:l\}(C;  Delta.(A)s;  X.A))



Date html generated: 2020_05_20-PM-01_29_26
Last ObjectModification: 2020_04_02-PM-06_28_49

Theory : presheaf!models!of!type!theory


Home Index