Nuprl Lemma : pscm-presheaf-sigma-typed

C:SmallCategory. ∀X,Delta:ps_context{j:l}(C). ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:psc_map{j:l}(C; Delta; X).
  ((Σ B)s = Σ (A)s (B)(s)dep ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  presheaf-sigma: Σ B pscm-dependent: (s)dep psc-adjoin: X.A pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ all: x:A. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat cat-comp: cat-comp(C) compose: g pscm-dependent: (s)dep typed-psc-snd: tq typed-psc-fst: tp{i:l}
Lemmas referenced :  pscm-ap-type_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-dependent_wf subtype_rel_self psc_map_wf small-category-cumulativity-2 presheaf-type_wf ps_context_wf small-category_wf pscm-presheaf-sigma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule dependent_functionElimination universeIsType

Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Delta:ps\_context\{j:l\}(C).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
\mforall{}s:psc\_map\{j:l\}(C;  Delta;  X).
    ((\mSigma{}  A  B)s  =  \mSigma{}  (A)s  (B)(s)dep)



Date html generated: 2020_05_20-PM-01_31_38
Last ObjectModification: 2020_04_02-PM-03_03_55

Theory : presheaf!models!of!type!theory


Home Index