Nuprl Lemma : psdcff-inj_wf

[C:SmallCategory]. ∀[A,B:Type]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[a:X(I)]. ∀[w:presheaf-fun-family(C;
                                                                                                             X;
                                                                                                             discr(A);
                                                                                                             discr(B);
                                                                                                             I;
                                                                                                             a)].
  (psdcff-inj(I;w) ∈ A ⟶ B)


Proof




Definitions occuring in Statement :  psdcff-inj: psdcff-inj(I;w) discrete-presheaf-type: discr(T) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T psdcff-inj: psdcff-inj(I;w) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) subtype_rel: A ⊆B presheaf-type-at: A(a) pi1: fst(t) discrete-presheaf-type: discr(T)
Lemmas referenced :  cat-id_wf subtype_rel_self presheaf-fun-family_wf discrete-presheaf-type_wf I_set_wf cat-ob_wf ps_context_wf small-category-cumulativity-2 istype-universe small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule applyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis extract_by_obid isectElimination functionEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Type].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].
\mforall{}[w:presheaf-fun-family(C;  X;  discr(A);  discr(B);  I;  a)].
    (psdcff-inj(I;w)  \mmember{}  A  {}\mrightarrow{}  B)



Date html generated: 2020_05_20-PM-01_35_47
Last ObjectModification: 2020_04_02-PM-06_35_51

Theory : presheaf!models!of!type!theory


Home Index