Nuprl Lemma : approx-fixpoint-unit-ball-0-ext

n:ℕ+. ∀f:{f:B(n) ⟶ B(n)| 
           (∀e:{e:ℝr0 < e} . ∃del:{del:ℝr0 < del} . ∀x,y:B(n).  ((d(x;y) < del)  (d(f x;f y) < e)))
           ∧ (∀x:B(n). x ≠ x))} . ∀e:{e:ℝr0 < e} .
  ∃t:B(n) ⟶ 𝔹
   ((∀p:B(n). ((↑(t p))  (↓d(f p;p) < e))) ∧ (↓∃k:ℕ+. ∃q:unit-ball-approx(n;k). (↑(t approx-ball-to-ball(k;q)))))


Proof




Definitions occuring in Statement :  approx-ball-to-ball: approx-ball-to-ball(k;p) unit-ball-approx: unit-ball-approx(n;k) real-unit-ball: B(n) real-vec-sep: a ≠ b real-vec-dist: d(x;y) rless: x < y int-to-real: r(n) real: nat_plus: + assert: b bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T approx-fixpoint-unit-ball-0 rless-cases rmul_preserves_rless rless-int rless_functionality radd-preserves-rless sq_stable__rless rmul_functionality_wrt_rless rless-iff4 rless-iff-large-diff radd_functionality_wrt_rless2 rinv-positive regular-less-iff decidable__le any: any x
Lemmas referenced :  approx-fixpoint-unit-ball-0 rless-cases rmul_preserves_rless rless-int rless_functionality radd-preserves-rless sq_stable__rless rmul_functionality_wrt_rless rless-iff4 rless-iff-large-diff radd_functionality_wrt_rless2 rinv-positive regular-less-iff decidable__le
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}f:\{f:B(n)  {}\mrightarrow{}  B(n)| 
                      (\mforall{}e:\{e:\mBbbR{}|  r0  <  e\} 
                            \mexists{}del:\{del:\mBbbR{}|  r0  <  del\}  .  \mforall{}x,y:B(n).    ((d(x;y)  <  del)  {}\mRightarrow{}  (d(f  x;f  y)  <  e)))
                      \mwedge{}  (\mneg{}(\mforall{}x:B(n).  f  x  \mneq{}  x))\}  .  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
    \mexists{}t:B(n)  {}\mrightarrow{}  \mBbbB{}
      ((\mforall{}p:B(n).  ((\muparrow{}(t  p))  {}\mRightarrow{}  (\mdownarrow{}d(f  p;p)  <  e)))
      \mwedge{}  (\mdownarrow{}\mexists{}k:\mBbbN{}\msupplus{}.  \mexists{}q:unit-ball-approx(n;k).  (\muparrow{}(t  approx-ball-to-ball(k;q)))))



Date html generated: 2019_10_30-AM-11_29_10
Last ObjectModification: 2019_07_30-PM-00_31_32

Theory : real!vectors


Home Index