Nuprl Lemma : sub-cube_wf
∀[k:ℕ]. ∀[up:ℕk ⟶ 𝔹]. ∀[c:real-cube(k)].  (sub-cube(up;c) ∈ real-cube(k))
Proof
Definitions occuring in Statement : 
sub-cube: sub-cube(up;c)
, 
real-cube: real-cube(k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sub-cube: sub-cube(up;c)
, 
real-cube: real-cube(k)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ifthenelse_wf, 
real_wf, 
ravg_wf, 
int_seg_wf, 
subtype_rel_self, 
real-vec_wf, 
real-cube_wf, 
bool_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality_alt, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[up:\mBbbN{}k  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[c:real-cube(k)].    (sub-cube(up;c)  \mmember{}  real-cube(k))
Date html generated:
2019_10_30-AM-11_32_08
Last ObjectModification:
2019_09_27-PM-01_56_41
Theory : real!vectors
Home
Index