Nuprl Lemma : sub-cube_wf

[k:ℕ]. ∀[up:ℕk ⟶ 𝔹]. ∀[c:real-cube(k)].  (sub-cube(up;c) ∈ real-cube(k))


Proof




Definitions occuring in Statement :  sub-cube: sub-cube(up;c) real-cube: real-cube(k) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sub-cube: sub-cube(up;c) real-cube: real-cube(k) real-vec: ^n nat: subtype_rel: A ⊆B
Lemmas referenced :  ifthenelse_wf real_wf ravg_wf int_seg_wf subtype_rel_self real-vec_wf real-cube_wf bool_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality_alt extract_by_obid isectElimination applyEquality hypothesisEquality hypothesis because_Cache universeIsType natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[up:\mBbbN{}k  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[c:real-cube(k)].    (sub-cube(up;c)  \mmember{}  real-cube(k))



Date html generated: 2019_10_30-AM-11_32_08
Last ObjectModification: 2019_09_27-PM-01_56_41

Theory : real!vectors


Home Index