Nuprl Lemma : connected_wf
∀[X:Type]. Connected(X) ∈ ℙ' supposing X ⊆r ℝ
Proof
Definitions occuring in Statement : 
connected: Connected(X), 
real: ℝ, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
connected: Connected(X), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
so_apply: x[s], 
and: P ∧ Q
Lemmas referenced : 
uall_wf, 
real_wf, 
all_wf, 
req_wf, 
exists_wf, 
or_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
setEquality, 
because_Cache, 
lambdaFormation, 
setElimination, 
rename, 
functionExtensionality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[X:Type].  Connected(X)  \mmember{}  \mBbbP{}'  supposing  X  \msubseteq{}r  \mBbbR{}
 Date html generated: 
2017_10_03-AM-10_11_23
 Last ObjectModification: 
2017_07_10-AM-10_42_58
Theory : reals
Home
Index