Nuprl Lemma : fun-series-converges-absolutely-converges
∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.  (Σn.f[n;x]↓ absolutely for x ∈ I 
⇒ Σn.f[n;x]↓ for x ∈ I)
Proof
Definitions occuring in Statement : 
fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I
, 
fun-series-converges: Σn.f[n; x]↓ for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
Lemmas referenced : 
fun-comparison-test, 
rabs_wf, 
rfun_wf, 
real_wf, 
i-member_wf, 
nat_wf, 
rleq_weakening_equal, 
set_wf, 
fun-series-converges_wf, 
interval_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
applyEquality, 
setEquality, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
functionEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.    (\mSigma{}n.f[n;x]\mdownarrow{}  absolutely  for  x  \mmember{}  I  {}\mRightarrow{}  \mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)
Date html generated:
2016_05_18-AM-09_57_09
Last ObjectModification:
2015_12_27-PM-11_07_27
Theory : reals
Home
Index