Nuprl Lemma : fun-series-converges-absolutely-converges

I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.  n.f[n;x]↓ absolutely for x ∈  Σn.f[n;x]↓ for x ∈ I)


Proof




Definitions occuring in Statement :  fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I fun-series-converges: Σn.f[n; x]↓ for x ∈ I rfun: I ⟶ℝ interval: Interval nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I rfun: I ⟶ℝ uall: [x:A]. B[x] so_apply: x[s1;s2] subtype_rel: A ⊆B prop: implies:  Q uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] label: ...$L... t
Lemmas referenced :  fun-comparison-test rabs_wf rfun_wf real_wf i-member_wf nat_wf rleq_weakening_equal set_wf fun-series-converges_wf interval_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lambdaEquality sqequalRule isectElimination applyEquality setEquality independent_functionElimination because_Cache independent_isectElimination functionEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.    (\mSigma{}n.f[n;x]\mdownarrow{}  absolutely  for  x  \mmember{}  I  {}\mRightarrow{}  \mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_57_09
Last ObjectModification: 2015_12_27-PM-11_07_27

Theory : reals


Home Index