Nuprl Lemma : homeomorphic_transitivity
∀[X,Y,Z:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[dZ:metric(Z)].
  (homeomorphic(X;dX;Y;dY) ⇒ homeomorphic(Y;dY;Z;dZ) ⇒ homeomorphic(X;dX;Z;dZ))
Proof
Definitions occuring in Statement : 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
homeomorphic: homeomorphic(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
compose: f o g, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
meq: x ≡ y, 
metric: metric(X), 
mfun: FUN(X ⟶ Y), 
prop: ℙ, 
sq_stable: SqStable(P), 
is-mfun: f:FUN(X;Y), 
so_apply: x[s], 
squash: ↓T, 
guard: {T}, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
compose-mfun, 
req_witness, 
int-to-real_wf, 
meq_wf, 
compose_wf, 
mfun_wf, 
homeomorphic_wf, 
metric_wf, 
istype-universe, 
sq_stable__meq, 
meq_functionality, 
meq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
universeIsType, 
independent_pairFormation, 
productIsType, 
functionIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination
Latex:
\mforall{}[X,Y,Z:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[dZ:metric(Z)].
    (homeomorphic(X;dX;Y;dY)  {}\mRightarrow{}  homeomorphic(Y;dY;Z;dZ)  {}\mRightarrow{}  homeomorphic(X;dX;Z;dZ))
 Date html generated: 
2019_10_30-AM-06_24_13
 Last ObjectModification: 
2019_10_02-AM-10_43_04
Theory : reals
Home
Index