Nuprl Lemma : homeomorphic_transitivity

[X,Y,Z:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[dZ:metric(Z)].
  (homeomorphic(X;dX;Y;dY)  homeomorphic(Y;dY;Z;dZ)  homeomorphic(X;dX;Z;dZ))


Proof




Definitions occuring in Statement :  homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] and: P ∧ Q member: t ∈ T compose: g cand: c∧ B all: x:A. B[x] meq: x ≡ y metric: metric(X) mfun: FUN(X ⟶ Y) prop: sq_stable: SqStable(P) is-mfun: f:FUN(X;Y) so_apply: x[s] squash: T guard: {T} uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  compose-mfun req_witness int-to-real_wf meq_wf compose_wf mfun_wf homeomorphic_wf metric_wf istype-universe sq_stable__meq meq_functionality meq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis because_Cache sqequalRule applyEquality setElimination rename natural_numberEquality independent_functionElimination universeIsType independent_pairFormation productIsType functionIsType inhabitedIsType instantiate universeEquality dependent_functionElimination imageMemberEquality baseClosed imageElimination independent_isectElimination

Latex:
\mforall{}[X,Y,Z:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[dZ:metric(Z)].
    (homeomorphic(X;dX;Y;dY)  {}\mRightarrow{}  homeomorphic(Y;dY;Z;dZ)  {}\mRightarrow{}  homeomorphic(X;dX;Z;dZ))



Date html generated: 2019_10_30-AM-06_24_13
Last ObjectModification: 2019_10_02-AM-10_43_04

Theory : reals


Home Index