Nuprl Lemma : i-real_wf

[I:Interval]. ∀[p:i-type(I)].  (real(p) ∈ ℝ)


Proof




Definitions occuring in Statement :  i-real: real(p) i-type: i-type(I) interval: Interval real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  i-real: real(p) i-type: i-type(I) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] top: Top
Lemmas referenced :  pi2_wf nat_plus_wf real_wf i-member_wf i-approx_wf pi1_wf_top subtype_rel_product top_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality setEquality hypothesisEquality applyEquality setElimination rename because_Cache independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry productEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[p:i-type(I)].    (real(p)  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-08_44_50
Last ObjectModification: 2015_12_27-PM-11_49_00

Theory : reals


Home Index