Nuprl Lemma : intermediate-value-theorem-rpolynomial

n:ℕ. ∀a:ℕ1 ⟶ ℝ. ∀b,c,d:ℝ.
  (∃x:{x:ℝx ∈ [b, c]} ((Σi≤n. a_i x^i) d)) supposing 
     ((d < i≤n. a_i c^i)) and 
     ((Σi≤n. a_i b^i) < d) and 
     (b ≤ c))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rpolynomial: i≤n. a_i x^i) rleq: x ≤ y rless: x < y req: y real: int_seg: {i..j-} nat: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  nat: squash: T sq_stable: SqStable(P) prop: real: subtype_rel: A ⊆B uall: [x:A]. B[x] false: False implies:  Q not: ¬A and: P ∧ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  less_than'_wf rsub_wf real_wf nat_plus_wf IVT-rpolynomial2 sq_stable__rless rpolynomial_wf rless_wf rleq_wf int_seg_wf nat_wf
Rules used in proof :  addEquality functionEquality imageElimination baseClosed imageMemberEquality because_Cache independent_functionElimination equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality minusEquality rename setElimination hypothesis applyEquality isectElimination lemma_by_obid voidElimination independent_pairEquality productElimination hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}b,c,d:\mBbbR{}.
    (\mexists{}x:\{x:\mBbbR{}|  x  \mmember{}  [b,  c]\}  .  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  d))  supposing 
          ((d  <  (\mSigma{}i\mleq{}n.  a\_i  *  c\^{}i))  and 
          ((\mSigma{}i\mleq{}n.  a\_i  *  b\^{}i)  <  d)  and 
          (b  \mleq{}  c))



Date html generated: 2016_05_18-AM-10_27_15
Last ObjectModification: 2016_01_17-AM-00_26_24

Theory : reals


Home Index