Nuprl Lemma : IVT-rpolynomial2

n:ℕ. ∀a:ℕ1 ⟶ ℝ. ∀b,c,d:ℝ.
  ((b ≤ c)  ((Σi≤n. a_i b^i) < d)  (d < i≤n. a_i c^i))  (∃x:{x:ℝx ∈ [b, c]} ((Σi≤n. a_i x^i) d)))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rpolynomial: i≤n. a_i x^i) rleq: x ≤ y rless: x < y req: y real: int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: exists: x:A. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) guard: {T} rpolynomial: i≤n. a_i x^i) so_lambda: λ2x.t[x] subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m] int_seg: {i..j-} lelt: i ≤ j < k rless: x < y sq_exists: x:{A| B[x]} nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) rsub: y i-member: r ∈ I rccint: [l, u] cand: c∧ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rleq: x ≤ y rnonneg: rnonneg(x) real:
Lemmas referenced :  rless_wf rpolynomial_wf int_seg_wf rleq_wf real_wf nat_wf IVT-rpolynomial1 int-to-real_wf rsub_wf radd_wf rmul_wf rless_functionality req_weakening radd-preserves-rless real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 itermConstant_wf rless_transitivity2 rleq_weakening rsum_functionality rnexp_wf int_seg_subtype_nat false_wf le_wf nat_plus_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf rnexp_functionality itermMultiply_wf real_term_value_mul_lemma rmul_functionality req_inversion rless_transitivity1 req_functionality radd-preserves-req member_rccint_lemma req_wf rminus_wf trivial-rleq-radd rleq_functionality_wrt_implies rleq_weakening_equal rmul_functionality_wrt_rleq2 itermMinus_wf real_term_value_minus_lemma radd_functionality_wrt_rleq rminus_functionality_wrt_rleq rmul_preserves_rleq2 rleq-implies-rleq less_than'_wf nat_plus_wf rleq_functionality req_transitivity radd_functionality rminus_functionality rpolynomial-composition1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality applyEquality natural_numberEquality addEquality setElimination rename hypothesis functionEquality lemma_by_obid dependent_functionElimination productElimination independent_functionElimination because_Cache independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation dependent_set_memberEquality unionElimination dependent_pairFormation inlFormation productEquality equalityTransitivity equalitySymmetry isect_memberFormation independent_pairEquality minusEquality axiomEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}b,c,d:\mBbbR{}.
    ((b  \mleq{}  c)
    {}\mRightarrow{}  ((\mSigma{}i\mleq{}n.  a\_i  *  b\^{}i)  <  d)
    {}\mRightarrow{}  (d  <  (\mSigma{}i\mleq{}n.  a\_i  *  c\^{}i))
    {}\mRightarrow{}  (\mexists{}x:\{x:\mBbbR{}|  x  \mmember{}  [b,  c]\}  .  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  d)))



Date html generated: 2017_10_03-PM-00_37_27
Last ObjectModification: 2017_07_28-AM-08_44_26

Theory : reals


Home Index