Nuprl Lemma : IVT-rpolynomial2
∀n:ℕ. ∀a:ℕn + 1 ⟶ ℝ. ∀b,c,d:ℝ.
  ((b ≤ c) ⇒ ((Σi≤n. a_i * b^i) < d) ⇒ (d < (Σi≤n. a_i * c^i)) ⇒ (∃x:{x:ℝ| x ∈ [b, c]} . ((Σi≤n. a_i * x^i) = d)))
Proof
Definitions occuring in Statement : 
rccint: [l, u], 
i-member: r ∈ I, 
rpolynomial: (Σi≤n. a_i * x^i), 
rleq: x ≤ y, 
rless: x < y, 
req: x = y, 
real: ℝ, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
uiff: uiff(P;Q), 
guard: {T}, 
rpolynomial: (Σi≤n. a_i * x^i), 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
so_apply: x[s], 
pointwise-req: x[k] = y[k] for k ∈ [n,m], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
nat_plus: ℕ+, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
rsub: x - y, 
i-member: r ∈ I, 
rccint: [l, u], 
cand: A c∧ B, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
real: ℝ
Lemmas referenced : 
rless_wf, 
rpolynomial_wf, 
int_seg_wf, 
rleq_wf, 
real_wf, 
nat_wf, 
IVT-rpolynomial1, 
int-to-real_wf, 
rsub_wf, 
radd_wf, 
rmul_wf, 
rless_functionality, 
req_weakening, 
radd-preserves-rless, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
itermConstant_wf, 
rless_transitivity2, 
rleq_weakening, 
rsum_functionality, 
rnexp_wf, 
int_seg_subtype_nat, 
false_wf, 
le_wf, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
rnexp_functionality, 
itermMultiply_wf, 
real_term_value_mul_lemma, 
rmul_functionality, 
req_inversion, 
rless_transitivity1, 
req_functionality, 
radd-preserves-req, 
member_rccint_lemma, 
req_wf, 
rminus_wf, 
trivial-rleq-radd, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rmul_functionality_wrt_rleq2, 
itermMinus_wf, 
real_term_value_minus_lemma, 
radd_functionality_wrt_rleq, 
rminus_functionality_wrt_rleq, 
rmul_preserves_rleq2, 
rleq-implies-rleq, 
less_than'_wf, 
nat_plus_wf, 
rleq_functionality, 
req_transitivity, 
radd_functionality, 
rminus_functionality, 
rpolynomial-composition1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
functionEquality, 
lemma_by_obid, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
unionElimination, 
dependent_pairFormation, 
inlFormation, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
independent_pairEquality, 
minusEquality, 
axiomEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}b,c,d:\mBbbR{}.
    ((b  \mleq{}  c)
    {}\mRightarrow{}  ((\mSigma{}i\mleq{}n.  a\_i  *  b\^{}i)  <  d)
    {}\mRightarrow{}  (d  <  (\mSigma{}i\mleq{}n.  a\_i  *  c\^{}i))
    {}\mRightarrow{}  (\mexists{}x:\{x:\mBbbR{}|  x  \mmember{}  [b,  c]\}  .  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  d)))
Date html generated:
2017_10_03-PM-00_37_27
Last ObjectModification:
2017_07_28-AM-08_44_26
Theory : reals
Home
Index