Nuprl Lemma : rminus_functionality_wrt_rleq

[x,y:ℝ].  -(x) ≤ -(y) supposing x ≥ y


Proof




Definitions occuring in Statement :  rge: x ≥ y rleq: x ≤ y rminus: -(x) real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top rge: x ≥ y
Lemmas referenced :  less_than'_wf rsub_wf rminus_wf real_wf nat_plus_wf rge_wf radd-preserves-rleq radd_wf int-to-real_wf rmul_wf rleq_functionality real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermMinus_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 req_transitivity itermMultiply_wf real_term_value_mul_lemma radd_functionality req_weakening rmul-identity1 req_inversion rminus-as-rmul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination computeAll int_eqEquality intEquality voidEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    -(x)  \mleq{}  -(y)  supposing  x  \mgeq{}  y



Date html generated: 2017_10_03-AM-08_28_18
Last ObjectModification: 2017_07_28-AM-07_25_09

Theory : reals


Home Index