Nuprl Lemma : IVT-rpolynomial1

n:ℕ. ∀a:ℕ1 ⟶ ℝ.
  (((Σi≤n. a_i r0^i) < r0)  (r0 < i≤n. a_i r1^i))  (∃x:{x:ℝx ∈ [r0, r1]} ((Σi≤n. a_i x^i) r0)))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rpolynomial: i≤n. a_i x^i) rless: x < y req: y int-to-real: r(n) real: int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] uimplies: supposing a r-ap: f(x) top: Top guard: {T} sq_exists: x:A [B[x]] exists: x:A. B[x] sq_stable: SqStable(P) nat: pointwise-req: x[k] y[k] for k ∈ [n,m] int_seg: {i..j-} rless: x < y nat_plus: + ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False
Lemmas referenced :  IVT-locally-non-constant int-to-real_wf rless-int rless_wf rpolynomial_wf real_wf i-member_wf rccint_wf req_wf member_rccint_lemma istype-void rleq_weakening_rless rpolynomial-locally-non-zero rleq_wf sq_stable__req int_seg_wf istype-nat req_weakening nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than rpolynomial_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis productElimination independent_functionElimination sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed dependent_set_memberEquality_alt universeIsType lambdaEquality_alt setElimination rename setIsType independent_isectElimination because_Cache isect_memberEquality_alt voidElimination dependent_pairFormation_alt productIsType imageElimination functionIsType addEquality applyEquality unionElimination approximateComputation int_eqEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.
    (((\mSigma{}i\mleq{}n.  a\_i  *  r0\^{}i)  <  r0)
    {}\mRightarrow{}  (r0  <  (\mSigma{}i\mleq{}n.  a\_i  *  r1\^{}i))
    {}\mRightarrow{}  (\mexists{}x:\{x:\mBbbR{}|  x  \mmember{}  [r0,  r1]\}  .  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  r0)))



Date html generated: 2019_10_30-AM-09_13_13
Last ObjectModification: 2019_02_13-AM-11_20_28

Theory : reals


Home Index