Nuprl Lemma : rpolynomial-locally-non-zero
∀n:ℕ. ∀a:ℕn + 1 ⟶ ℝ.
  (((Σi≤n. a_i * r0^i) < r0) 
⇒ (r0 < (Σi≤n. a_i * r1^i)) 
⇒ locally-non-constant(λx.(Σi≤n. a_i * x^i);r0;r1;r0))
Proof
Definitions occuring in Statement : 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
rpolynomial: (Σi≤n. a_i * x^i)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
rsub: x - y
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
r-ap: f(x)
, 
cand: A c∧ B
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
rleq_wf, 
int-to-real_wf, 
rless_wf, 
real_wf, 
rpolynomial_wf, 
int_seg_wf, 
nat_wf, 
small-reciprocal-real-ext, 
rsub_wf, 
radd-preserves-rless, 
radd_wf, 
rminus_wf, 
rless_functionality, 
radd-zero-both, 
req_weakening, 
radd-rminus-assoc, 
radd_comm, 
radd_functionality, 
exp-fastexp, 
imax_wf, 
exp_wf2, 
imax_nat_plus, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
absval_wf, 
rleq_weakening_equal, 
rleq_weakening_rless, 
absval_ifthenelse, 
rneq_wf, 
lt_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
le_wf, 
minus-is-int-iff, 
itermAdd_wf, 
itermMinus_wf, 
int_term_value_add_lemma, 
int_term_value_minus_lemma, 
false_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
mul-commutes, 
mul-swap, 
mul-associates, 
zero-mul, 
zero-add, 
add-commutes, 
rpolynomial-locally-non-zero-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
addEquality, 
setElimination, 
rename, 
functionEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
addLevel, 
independent_isectElimination, 
levelHypothesis, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productEquality, 
inrFormation, 
dependent_set_memberFormation, 
inlFormation, 
pointwiseFunctionality, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
instantiate, 
cumulativity, 
impliesFunctionality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.
    (((\mSigma{}i\mleq{}n.  a\_i  *  r0\^{}i)  <  r0)
    {}\mRightarrow{}  (r0  <  (\mSigma{}i\mleq{}n.  a\_i  *  r1\^{}i))
    {}\mRightarrow{}  locally-non-constant(\mlambda{}x.(\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i);r0;r1;r0))
Date html generated:
2017_10_03-PM-00_37_02
Last ObjectModification:
2017_07_28-AM-08_44_10
Theory : reals
Home
Index