Nuprl Lemma : rpolynomial-locally-non-zero

n:ℕ. ∀a:ℕ1 ⟶ ℝ.
  (((Σi≤n. a_i r0^i) < r0)  (r0 < i≤n. a_i r1^i))  locally-non-constant(λx.(Σi≤n. a_i x^i);r0;r1;r0))


Proof




Definitions occuring in Statement :  locally-non-constant: locally-non-constant(f;a;b;c) rpolynomial: i≤n. a_i x^i) rless: x < y int-to-real: r(n) real: int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q locally-non-constant: locally-non-constant(f;a;b;c) member: t ∈ T prop: uall: [x:A]. B[x] nat: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] uimplies: supposing a rsub: y nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True guard: {T} rless: x < y sq_exists: x:{A| B[x]} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top subtype_rel: A ⊆B real: r-ap: f(x) cand: c∧ B rneq: x ≠ y int-to-real: r(n) le: A ≤ B uiff: uiff(P;Q) sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  rleq_wf int-to-real_wf rless_wf real_wf rpolynomial_wf int_seg_wf nat_wf small-reciprocal-real-ext rsub_wf radd-preserves-rless radd_wf rminus_wf rless_functionality radd-zero-both req_weakening radd-rminus-assoc radd_comm radd_functionality exp-fastexp imax_wf exp_wf2 imax_nat_plus less_than_wf nat_plus_wf nat_plus_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf absval_wf rleq_weakening_equal rleq_weakening_rless absval_ifthenelse rneq_wf lt_int_wf assert_wf bnot_wf not_wf le_wf minus-is-int-iff itermAdd_wf itermMinus_wf int_term_value_add_lemma int_term_value_minus_lemma false_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot mul-commutes mul-swap mul-associates zero-mul zero-add add-commutes rpolynomial-locally-non-zero-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis functionExtensionality applyEquality addEquality setElimination rename functionEquality dependent_functionElimination dependent_set_memberEquality because_Cache productElimination independent_functionElimination addLevel independent_isectElimination levelHypothesis sqequalRule independent_pairFormation imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll productEquality inrFormation dependent_set_memberFormation inlFormation pointwiseFunctionality promote_hyp imageElimination baseApply closedConclusion instantiate cumulativity impliesFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.
    (((\mSigma{}i\mleq{}n.  a\_i  *  r0\^{}i)  <  r0)
    {}\mRightarrow{}  (r0  <  (\mSigma{}i\mleq{}n.  a\_i  *  r1\^{}i))
    {}\mRightarrow{}  locally-non-constant(\mlambda{}x.(\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i);r0;r1;r0))



Date html generated: 2017_10_03-PM-00_37_02
Last ObjectModification: 2017_07_28-AM-08_44_10

Theory : reals


Home Index