Nuprl Lemma : metric-strong-extensionality

[X:Type]
  ∀d:metric(X)
    (mcomplete(X with d)
     (∀Y:Type. ∀d':metric(Y). ∀f:X ⟶ Y.
          ((∀x1,x2:X.  (x1 ≡ x2  f[x1] ≡ f[x2]))  (∀x1,x2:X.  (f[x1] f[x2]  x1 x2)))))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) mk-metric-space: with d msep: y meq: x ≡ y metric: metric(X) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q so_apply: x[s] prop: or: P ∨ Q not: ¬A false: False msep: y meq: x ≡ y mdist: mdist(d;x;y) guard: {T} uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  metric-weak-Markov msep_wf meq_wf metric_wf mcomplete_wf mk-metric-space_wf istype-universe msep-or istype-void rless_transitivity1 int-to-real_wf mdist_wf rleq_weakening rless_irreflexivity req_functionality mdist-symm req_weakening
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination independent_functionElimination because_Cache universeIsType applyEquality inhabitedIsType sqequalRule functionIsType instantiate universeEquality unionElimination inlFormation_alt inrFormation_alt natural_numberEquality independent_isectElimination voidElimination productElimination

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        (mcomplete(X  with  d)
        {}\mRightarrow{}  (\mforall{}Y:Type.  \mforall{}d':metric(Y).  \mforall{}f:X  {}\mrightarrow{}  Y.
                    ((\mforall{}x1,x2:X.    (x1  \mequiv{}  x2  {}\mRightarrow{}  f[x1]  \mequiv{}  f[x2]))  {}\mRightarrow{}  (\mforall{}x1,x2:X.    (f[x1]  \#  f[x2]  {}\mRightarrow{}  x1  \#  x2)))))



Date html generated: 2019_10_30-AM-06_47_36
Last ObjectModification: 2019_10_02-AM-10_58_39

Theory : reals


Home Index