Nuprl Lemma : r2-unit-circle_wf

[p:ℝ^2]. (r2-unit-circle(p) ∈ ℙ)


Proof




Definitions occuring in Statement :  r2-unit-circle: r2-unit-circle(p) real-vec: ^n uall: [x:A]. B[x] prop: member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T r2-unit-circle: r2-unit-circle(p) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T true: True
Lemmas referenced :  req_wf radd_wf rnexp_wf false_wf le_wf lelt_wf int-to-real_wf real-vec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis hypothesisEquality applyEquality because_Cache imageMemberEquality baseClosed axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:\mBbbR{}\^{}2].  (r2-unit-circle(p)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_03-AM-10_50_51
Last ObjectModification: 2017_06_18-PM-01_23_37

Theory : reals


Home Index