Nuprl Lemma : r2-unit-circle_wf
∀[p:ℝ^2]. (r2-unit-circle(p) ∈ ℙ)
Proof
Definitions occuring in Statement : 
r2-unit-circle: r2-unit-circle(p)
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
r2-unit-circle: r2-unit-circle(p)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
req_wf, 
radd_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
lelt_wf, 
int-to-real_wf, 
real-vec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:\mBbbR{}\^{}2].  (r2-unit-circle(p)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_03-AM-10_50_51
Last ObjectModification:
2017_06_18-PM-01_23_37
Theory : reals
Home
Index