Nuprl Lemma : rabs-rmul-rleq-rabs
∀[x,y,a,b:ℝ].  (|x * y| ≤ |a * b|) supposing ((|y| ≤ |b|) and (|x| ≤ |a|))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rabs: |x|, 
rmul: a * b, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
prop: ℙ, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
rabs_wf, 
rmul_wf, 
real_wf, 
nat_plus_wf, 
rleq_wf, 
rabs-rmul-rleq, 
rleq_functionality, 
req_weakening, 
rabs-rmul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}[x,y,a,b:\mBbbR{}].    (|x  *  y|  \mleq{}  |a  *  b|)  supposing  ((|y|  \mleq{}  |b|)  and  (|x|  \mleq{}  |a|))
 Date html generated: 
2016_05_18-AM-07_14_45
 Last ObjectModification: 
2015_12_28-AM-00_42_23
Theory : reals
Home
Index